A brief introduction to nmnh manufacturer | BONTAC

nmnhメーカーの簡単な紹介|ボンタック

一般に、世界のNMNHメーカーが利用しているNMNH調製の製造方法には、化学的または酵素的合成、発酵生合成など、主に3つあります。現在、NMNHメーカーは中国、アメリカ、日本、ドイツなど世界中にあります。
見積もりを取得

NMNHの利点

NMNH: 1.「ボンザイム」全酵素法、環境にやさしく、有害な溶媒残留物が製造されていない粉末。 2. Bontacは、高純度、安定性のレベルでNMNH粉末を製造する世界初のメーカーです。 3.独自の「Bonpure」7段階精製技術、NMNH粉末の高純度(最大99%)と生産の安定性 4. 自社工場を擁し、NMNH粉末製品の高品質で安定した供給を保証するために、多くの国際認証を取得しています。 5. ワンストップの製品ソリューションカスタマイズサービスを提供する

NADHの利点

ナド: 1.ボンザイム全酵素法、環境にやさしく、有害な溶剤残留物なし 2. 独自の Bonpure 7 段階精製技術、純度は 98% 以上 3.特別な特許取得済みのプロセス結晶形、より高い安定性 4. 高品質を確保するために多くの国際認証を取得しています 5. 業界をリードする国内外の NADH 特許 8 件 6. ワンストップの製品ソリューションカスタマイズサービスを提供します

NADの利点

ナッド: 1.「ボンザイム」全酵素法、環境にやさしく、有害な溶剤残留物なし 2. 世界中の 1000+ 企業の安定したサプライヤー 3. 独自の「Bonpure」7段階精製技術、より高い製品含有量とより高い変換率 4. 安定した製品品質を確保する凍結乾燥技術 5.独自の結晶技術、より高い製品溶解度 6.自社工場と多数の国際認証を取得し、高品質で製品の安定供給を確保しています

MNMの利点

NMN: 1.「ボンザイム」全酵素法、環境にやさしく、有害な溶媒残留物なし 2.独自の「Bonpure」7段階精製技術、高純度(最大99.9%)と安定性 3. 業界をリードする技術: 15 件の国内外の NMN 特許 4.自社工場と多数の国際認証を取得し、高品質で安定した製品の供給を確保しています 5. 複数の in vivo 研究により、Bontac NMN は安全で効果的であることが示されています 6. ワンストップの製品ソリューションカスタマイズサービスを提供します 7. ハーバード大学の有名なデビッド・シンクレアチームのNMN原料サプライヤー

about us

お客様のビジネスに最適なソリューションをご用意しています

Bontac Bio-Engineering (Shenzhen) Co., Ltd. (以下、BONTAC) は、2012 年 7 月に設立されたハイテク企業です。BONTACは、酵素触媒技術を中核とし、補酵素と天然物を主力製品として、研究開発、生産、販売を統合しています。BONTACには、補酵素、天然物、砂糖代替品、化粧品、栄養補助食品、医療中間体を含む6つの主要な製品シリーズがあります。

グローバルをリードするNMNの業界、BONTACは中国で最初の全酵素触媒技術を持っています。当社の補酵素製品は、健康産業、医療および美容、グリーン農業、生物医学、その他の分野で広く使用されています。BONTACは、独立したイノベーションを堅持し、170件の発明特許.従来の化学合成および発酵業界とは異なり、BONTACにはグリーン低炭素で高付加価値の生合成技術の利点があります。さらに、BONTACは中国で最初の省レベルでの補酵素工学技術研究センターを設立し、広東省でも唯一のものです。

今後、BONTACはグリーン、低炭素、高付加価値の生合成技術の利点に焦点を当て、学界や上流/下流のパートナーと生態学的関係を構築し、合成生物産業を継続的にリードし、人類のより良い生活を創造していきます。

詳細情報

NMNHはNMNよりも強力です

培養細胞に適用すると、「NMNに必要な濃度の10倍(5μM)でNAD+を大幅に増加させる」ことができ、NMNよりも効率的であることが示されています。 さらに、NMNHは、500μM濃度で「NAD+濃度のほぼ10倍の増加を達成しましたが、NMNは1mM濃度でもこれらの細胞のNAD+含有量を2倍にしかできなかった」ため、より効果的であることが示されています。

興味深いことに、NMNH は NMN に比べて作用が速く、効果が長持ちするようです。著者らによると、NMNHは「15分以内にNAD+レベルの大幅な増加」を誘発し、「NAD+は最大6時間着実に増加し、24時間安定したが、NMNはわずか1時間で頭打ちに達した。これはおそらく、NAD+へのNMNリサイクル経路がすでに飽和状態になっていたためである」とのことです。

NMNH is more potent than NMN

NADH粉末の製造方法

NMNH 粉末調製の主な方法には、抽出、発酵、強化、生合成、有機物合成が含まれます。他の製剤と比較して、無公害、高レベルの純度、安定性という利点により、酵素全体が主流の方法になります。

NADH powder manufacturing method

BONTAC NMNH製品の特長と利点

1、「ボンザイム」全酵素法、環境にやさしく、有害な溶剤残留物が残らない製造粉末。

2、Bontacは、高純度、安定性のレベルでNMNH粉末を製造する世界初のメーカーです。

3、独自の「Bonpure」7段階精製技術、NMNH粉末の高純度(最大99%)と生産の安定性

4、自社工場と多数の国際認証を取得し、NMNH粉末製品の高品質と安定供給を保証

5、ワンストップ製品ソリューションカスタマイズサービスの提供

BONTAC NMNH product features and advantages
ユーザーレビュー

ユーザーの声 BONTACについて

BONTACは、長年にわたって協力してきた信頼できるパートナーです。それらの補酵素の純度は非常に高いです。彼らのCOAは比較的高いテスト結果を達成できます。

前線

私がBONTACを発見したのは、DAVIDがNADとNMN関連に関するcell誌の記事で、実験材料にBONTACのNMNを使用していることが示されたからです。 その後、中国でそれらを見つけました。 長年の協力を経て、とても良い会社だと思います。

ハンクス

グリーン、健康的、高純度は、他の製品と比較したBONTACの製品の利点だと思います。私は今でも彼らと一緒に働いています。

フィリップ

2017年、私たちはBONTACの補酵素を選択しましたが、その間に私たちのチームは多くの技術的な問題に遭遇し、彼らの技術チームに相談し、良い解決策を提供することができました。彼らの製品は非常に迅速に出荷され、より効率的に機能します。

ゴブス
よくある質問

何か質問はありますか?

また、NMNHは、同じ濃度で投与した場合、さまざまな組織のNAD+レベルを上昇させる上でNMNよりも効果的であることが証明され、細胞株で観察された結果が確認されました。この研究で提示されたデータは、NAD+ ブースターが急性腎障害のさまざまなモデルから保護し、尿細管損傷を軽減し、回復を促進するための他の NAD+ 前駆体に代わる優れた介入として NMNH を位置づけているという証拠も裏付けています。

NAD+エンハンサーの現在のレパートリーの限界を克服するために、NAD+細胞内プールに対してより顕著な効果を持つ他の分子が望まれます。これにより、還元型のニコチンアミド モノヌクレオチド (NMNH) を NAD+ エンハンサーとして使用することを調査するようになりました。細胞におけるこの分子の役割に関する情報は非常に少ないです。実際、NMNHを生成する酵素活性は1つだけ報告されています。これは、ヒトペルオキシソームNudix加水分解酵素hNUDT1232およびマウスミトコンドリアNudt13.33のNADHジホスファターゼ活性であり、細胞内では、NMNHはニコチンアミドモノヌクレオチドアデニリルトランスフェラーゼ(NMNAT)を介してNADHに変換されると仮定されています.34しかし、NudixジホスファターゼによるNMNH産生とNADH合成のためのNMNATによるその使用の両方は、単離されたタンパク質を使用してin vitroでのみ報告されています。 NMNH が細胞の NAD+ 代謝にどのように関与するかは不明のままです。

まずは工場を視察します。いくつかの審査を経て、消費者と直接向き合うNMNH企業はブランド構築にもっと注意を払います。したがって、良いブランドにとっては品質が最も重要であり、原材料の品質を管理するために最初に行うことは工場を検査することです。Bontac社は、SGSのカテリアで高品質のNMNH粉末を実際に製造しています。第二に、純度がテストされます。純度はNMNパウダーの最も重要なパラメータの1つです。高純度のNMNHを保証できない場合、残りの物質は関連する基準を超える可能性があります。添付の証明書が示すように、ボンタックが製造するNMNH粉末は純度99%に達しています。最後に、それを証明するには専門的なテストスペクトルが必要です。有機化合物の構造を決定する一般的な方法には、核磁気共鳴分光法 (NMR) や高分解能質量分析法 (HRMS) などがあります。通常、これら2つのスペクトルの分析を通じて、化合物の構造を予備的に決定できます。

最新情報とブログ投稿

最新の研究は証明しています:コエンザイムNAD+は腫瘍免疫を高めることができます!中国科学院専門家コメント

2021年8月10日、上海科学技術大学の研究者らは、腫瘍浸潤T細胞におけるTUBBYを介したNAMPT転写の欠陥を救うことにより、NAD+サプリメントが腫瘍殺傷機能を増強するというタイトルの論文をCell Reportsに発表し、CAR-T療法および免疫チェックポイント阻害剤療法中にNAD+を補給すると、Tの抗腫瘍活性を改善できることを明らかにしました。 現在、栄養製品としてのNAD+の補助前駆体は、人間の消費の安全性が検証されています。この成果は、T 細胞の抗腫瘍活性を改善するためのシンプルで実行可能な新しい方法を提供します。 自然に発生する腫瘍浸潤リンパ球 (TIL) や遺伝子組み換え T 細胞の養子移植、および T 細胞の機能を高めるための免疫チェックポイント遮断 (ICB) の使用を含むがん免疫療法は、治療抵抗性のがんの持続的な臨床反応を達成するための有望なアプローチとして浮上しています (Lee et al., 2015;Rosenberg and Restifo、2015;Sharma and Allison、2015)。免疫療法は臨床で成功裏に使用されていますが、免疫療法の恩恵を受ける患者の数はまだ限られています (Fradet et al., 2019;Newick et al., 2017)。腫瘍微小環境 (TME) 関連の免疫抑制は、両方の免疫療法に対する反応が低い、または反応がない主な理由として浮上しています (Ninomiya et al., 2015;Schoenfeld and Hellmann、2020)。したがって、免疫療法における TME 関連の限界を調査し、克服する取り組みが非常に緊急です。 免疫細胞とがん細胞が多くの基本的な代謝経路を共有しているという事実は、TME における栄養素をめぐる和解できない競争を意味します (Andrejeva and Rathmell, 2017;Chang et al., 2015)。制御されていない増殖中に、がん細胞はより迅速な代謝産物生成のために代替経路を乗っ取ります (Vander Heiden et al., 2009)。その結果、TME で有毒になる可能性のある栄養素の枯渇、低酸素症、酸性度、および代謝産物の生成が免疫療法の成功を妨げる可能性があります (Weinberg et al., 2010)。実際、TILは成長する腫瘍内でミトコンドリアストレスを経験し、疲労状態になることがよくあります(Scharping et al.、2016)。興味深いことに、複数の研究は、TME の代謝変化が T 細胞の分化と機能活性を再形成する可能性があることも示しています (Bailis et al., 2019;Chang et al., 2013;Peng et al., 2016)。これらすべての証拠は、T 細胞の代謝再プログラミングがストレスを受けた代謝環境から T 細胞を救い、それによって抗腫瘍活性を再活性化する可能性があるという仮説を立てるようになりました (Buck et al., 2016;Zhang et al., 2017)。 今回の研究では、遺伝子スクリーニングと化学スクリーニングの両方を統合することで、NAD+生合成に関与する重要な遺伝子であるNAMPTがT細胞の活性化に不可欠であることを特定しました。NAMPT阻害は、T細胞のNAD+の強力な減少をもたらし、それによって解糖調節とミトコンドリア機能を破壊し、ATP合成を遮断し、T細胞受容体(TCR)の下流シグナル伝達カスケードを弱めました。卵巣がん患者において、TILは末梢血単核球(PBMC)のT細胞よりもNAD+およびNAMPTの発現レベルが比較的低いという観察に基づいて、T細胞の遺伝子スクリーニングを実施し、タビー(TUB)がNAMPTの転写因子であることを同定しました。最後に、この基本的な知識を(プレ)クリニックに適用し、NAD+の補給が養子移植CAR-T細胞療法と免疫チェックポイント遮断療法の両方で抗腫瘍殺傷活性を劇的に改善するという非常に強力な証拠を示し、NAD+代謝を標的としてがんをより良く治療する有望な可能性を示しています。 1.NAD+はエネルギー代謝に影響を与えることでT細胞の活性化を調節します 抗原刺激後、T 細胞はミトコンドリア酸化から ATP の主な供給源としての解糖まで、代謝の再プログラミングを受けます。細胞増殖とエフェクター機能をサポートするのに十分なミトコンドリア機能を維持しながら。NAD+ が酸化還元の主な補酵素であることを考慮して、研究者らは代謝質量分析や同位体標識などの実験を通じて、T 細胞の代謝レベルに対する NAD+ の効果を検証しました。in vitro 実験の結果は、NAD+ 欠乏症が T 細胞の解糖、TCA サイクル、および電子伝達系代謝のレベルを大幅に低下させることを示しています。研究者らは、ATPを補充する実験を通じて、NAD+の欠乏が主にT細胞におけるATPの産生を阻害し、それによってT細胞の活性化レベルを低下させることを発見しました。 2.NAMPTによって制御されるNAD+サルベージ合成経路は、T細胞の活性化に不可欠です 代謝リプログラミングプロセスは、免疫細胞の活性化と分化を調節します。T細胞代謝を標的とすることは、細胞的に免疫応答を調節する機会を提供します。腫瘍微小環境内の免疫細胞、それ自体の代謝レベルもそれに応じて影響を受けます。この記事の研究者らは、ゲノムワイドなsgRNAスクリーニングと代謝関連の低分子阻害剤スクリーニング実験を通じて、T細胞の活性化におけるNAMPTの重要な役割を発見しました。ニコチンアミドアデニンジヌクレオチド(NAD+)は酸化還元反応の補酵素であり、サルベージ経路、de novo合成経路、およびPreiss-Handler経路を介して合成できます。NAMPT 代謝酵素は、主に NAD+ サルベージ合成経路に関与しています。臨床腫瘍サンプルの分析により、腫瘍浸潤性T細胞では、NAD+レベルとNAMPTレベルが他のT細胞よりも低いことがわかりました。研究者らは、NAD+ レベルが腫瘍浸潤性 T 細胞の抗腫瘍活性に影響を与える要因の 1 つである可能性があると推測しています。 3.NAD+を補給してT細胞の抗腫瘍活性を高める 免疫療法はがん治療における探索的研究ですが、主な問題は、最良の治療戦略と、全集団における免疫療法の有効性です。研究者らは、NAD+ レベルを補給することで T 細胞の活性化能力を高めることで、T 細胞ベースの免疫療法の効果を高めることができるかどうかを研究したいと考えています。同時に、抗CD19 CAR-T療法モデルと抗PD-1免疫チェックポイント阻害剤療法モデルでは、NAD+の補給がT細胞の腫瘍殺傷効果を有意に高めることが確認されました。研究者らは、抗CD19 CAR-T治療モデルにおいて、NAD+を補給したCAR-T治療群のほぼすべてのマウスが腫瘍クリアランスを達成したのに対し、NAD+を補給していないCAR-T治療群は約20%しかマウスの腫瘍クリアランスを達成しなかったことを発見しました。これと一致して、抗PD-1免疫チェックポイント阻害剤治療モデルでは、B16F10腫瘍は抗PD-1治療に対して比較的耐性があり、阻害効果は有意ではありません。ただし、抗 PD-1 および NAD+ 治療群における B16F10 腫瘍の増殖は有意に阻害される可能性があります。これに基づいて、NAD+ の補給は、T 細胞ベースの免疫療法の抗腫瘍効果を高めることができます。 4.NAD+の補給方法 NAD+分子は大きく、人体に直接吸収して利用することはできません。経口で直接摂取されたNAD+は、主に小腸のブラシ境界細胞によって加水分解されます。考え方の観点から見ると、NAD+を補う別の方法があり、それは特定の物質を補給して人体内で自律的にNAD+を合成できるようにする方法を見つけることです。人体でNAD+を合成する方法は、Preiss-Handler経路、de novo合成経路、サルベージ合成経路の3つです。3つの方法でNAD+を合成できますが、一次と二次の違いもあります。その中で、最初の 2 つの合成経路によって生成される NAD+ は、ヒト NAD+ 全体の約 15% しか占めず、残りの 85% は修復合成の方法によって達成されます。言い換えれば、サルベージ合成経路は、人体がNAD+を補うための鍵です。 NAD+ の前駆体の中で、ニコチンアミド (NAM)、NMN、ニコチンアミド リボース (NR) はすべてサルベージ合成経路を通じて NAD+ を合成するため、これら 3 つの物質は NAD+ を補給するための体の選択となっています。 NR自体には副作用はありませんが、NAD+合成の過程で、そのほとんどはNMNに直接変換されるのではなく、最初にNAMに消化されてからNMNの合成に参加する必要がありますが、それでも律速酵素の制限から逃れることはできません。したがって、NRの経口投与によるNAD+の補給能力も制限的である。 NMNはNAD+を補給する前駆体として、律速酵素の制限を回避するだけでなく、体内で非常に迅速に吸収され、NAD+に直接変換できます。したがって、NAD+を補うための直接的、迅速、効果的な方法として使用できます。 専門家のレビュー: Xu Chenqi(中国科学院分子細胞科学優秀イノベーションセンター、免疫学研究専門家) がん治療は世界でも問題です。免疫療法の発展により、従来のがん治療の限界が補われ、医師の治療法が拡大しました。がん免疫療法は、免疫チェックポイント遮断療法、操作T細胞療法、腫瘍ワクチンなどに分けることができます。これらの治療法は、がんの臨床治療において一定の役割を果たしてきました。同時に、これにより、免疫療法の効果をさらに高め、免疫療法の受益者を拡大する方法に現在の免疫療法研究の焦点が当てられています。

ヒト腸内細菌叢に対する甘味料ステビアの影響に関するさらなる調査

1. はじめに 腸内細菌叢は、宿主の健康の調節に寄与する重要な要素の 1 つとして長い間考えられてきました。腸内細菌叢の組成や質の変化は、宿主に生理学的影響を与える可能性があります。健康な集団の腸内細菌叢に対する甘味料ステビア (ステビオシドとしても知られる) の効果を判断するために、甘味料ステビアを 5 滴 1 日 2 滴摂取または摂取しない健康な参加者から便サンプルを収集します。16S rRNAシーケンシング法の分析後、ステビアを12週間摂取した後、腸内細菌叢に大規模な変化は見られず、ステビアの安全性が示唆されています。 2.ステビアの摂取後のアルファまたはベータの多様性のわずかな変化 グループ間でアルファ多様性(観察された分類群、均一性、シャノン指数に関して)とベータ多様性(PCoA、PERMANOVA、およびJaccard指数に関して)に有意差がないことがわかりました。それにもかかわらず、PCoAプロットはx軸に沿って強い分離を示しています。さらに、各グループのコミュニティ構成は、時間の経過とともに比較的均等であり、同様に多様です。 3.分類群の相対的な存在量に明確な違いはありません 属レベルでは、相対存在量は対照群とステビア群の間で同様です。クラス、目、および家族レベルでの相対的な存在量には大きな違いは観察されません。驚くべきことに、ブチリコッカスはベースラインで有意差を示す唯一の特定分類群ですが、ステビアの12週間の摂取後には示されません。さらに、コリンセラとアルダークロイツィアは、ベースラインで明らかに異なると同定された2つのコプロコッカス種です(ステビアと対照を比較すると、1つは高く、もう1つは低く)、ステビアとの12週間の摂取後に有意に上昇します。 4.甘味料ステビオール配糖体の安全な摂取量 欧州食品安全機関 (EFSA) には、食品添加物および香料に関するパネル (FAF) があり、食品添加物の安全性を評価し、安全に使用するための許容可能な 1 日摂取量レベルを確立する責任があります。ステビアからの抽出物の1つであるステビオール配糖体もFAFによって評価されています。最新の毒物学的試験によると、この甘味料は遺伝毒性や発がん性がなく、人間の生殖器系や成長期の子供に悪影響を及ぼしません。 専門家グループは、ステビオール配糖体の1日許容摂取量(ADI)を体重1キログラムあたり1日あたり4ミリグラムに設定しており、これは米国食糧農業機関(FAO)と世界保健機関(WHO)が管理する食品添加物合同専門家委員会(JECFA)によって決定されたレベルと一致しています。 5. まとめ ステビアを定期的かつ長期的に摂取しても、ヒトの腸内細菌群の組成があからさまに変化することはありません。ステビアは、摂取量が適切に制御されている限り安全です。 参考 シン G、マクベイン AJ、マクラフリン JT、スタマタキ NS。非栄養甘味料ステビアを12週間摂取しても、ヒトの腸内細菌叢の組成は変化しません。栄養素。2024;16(2):296.2024 年 1 月 18 日に公開されました。土井:10.3390/nu16020296 BONTAC ステビア/ステビオシド (RD) BONTACは、2012年以来、自社工場、170を超えるグローバル特許、医師と修士で構成される強力な研究開発チームを擁し、コエンザイムおよび天然物の原材料の研究開発、製造、販売に専念してきました。特許グレードのステビアReb-D(US11312948B2およびZL2018800019752)はBONTACで入手できます。ステビオシド Reb-D の高品質で安定した供給は、独自の Bonpure 7 段階精製技術と Bonzyme Whole-enzymatic 法により、ここでより適切に保証できます。 免責事項 この記事は学術誌の参考文献に基づいています。関連情報は共有と学習のみを目的として提供されており、医学的アドバイスの目的を表すものではありません。侵害がある場合は、作成者に削除を依頼してください。この記事で表明された見解は、BONTACの立場を表すものではありません。 いかなる状況においても、BONTACは、お客様が本ウェブサイト上の情報および資料に依存したことに起因または間接的に生じるいかなる請求、損害、損失、経費、費用または責任(利益の損失、事業の中断、または情報の損失に対する直接的または間接的な損害を含むがこれらに限定されない)について、いかなる方法でも責任を負わないものとします。

乳がんの発症におけるジンセノサイド Rh2 の機能を掘り下げる

1. はじめに 世界保健機関(WHO)の2020年の報告書によると、世界中で約230万人の乳がん患者が発生している。乳がんは、女性で最も悪性度の高い腫瘍の 1 つとして浮上しており、発生率も高いです。近年、早期乳がんの治癒率の向上は大きな進歩を遂げていますが、進行乳がんは依然として治癒が困難です。 早期乳がんの再発や転移のリスクを軽減し、進行乳がん患者の生存期間を延長する方法は、乳がんの臨床治療において依然として課題です。特に、ジンセノサイド Rh2 (GRh2) は、腫瘍免疫応答に重要な細胞傷害性自然リンパ球の一種であるナチュラルキラー (NK) 細胞の免疫監視を強化することにより、乳がんの進行を遅らせるのに顕著な影響を及ぼします。 2. 乳がんの進行におけるGRh2の抑制的役割 GRh2 は乳がんの増殖、増殖、転移を妨げます。簡単に言えば、モデルマウスの体重と腫瘍体積は、GRh2の処理(10 mg/kgおよび20 mg/kg)後に著しく減少します。さらに、乳がん細胞の増殖速度は、用量依存的に GRh2 によって抑制されます (5、10、および 20 mg/kg)。GRh2 (20 mg/kg) の治療により、肺活量の損失は明らかに減少し、MDA-MB-231 腫瘍細胞によって形成される肺転移も著しく軽減され、明らかな肝転移結節はありません。 3. GRh2処理後の乳がん細胞に対するNK細胞の殺傷効果の強化 GRh2 は、NK92MI 細胞の殺傷能力を改善することにより、乳がんの進行を遅らせるのに顕著な効果を発揮します。一言で言えば、NK92MI細胞-乳がん細胞共培養系における殺傷メディエーターパーフォリンとIFN-γのmRNA発現レベルは、GRh2処理後に明示的にアップレギュレートされます。驚くべきことに、GRh2 による乳がんの肺転移の減少は、NK 細胞の枯渇によってほぼ打ち消されます。ビヒクルコントロールと比較して、NK細胞の脱顆粒マーカーであるCD107aの量は、GRh2(20 mg/kg)の存在下で顕著に上昇し、乳がんに対するNK細胞の殺傷活性の向上が確認されています。 4. 乳がんに対するNK細胞活性の増強に関するGRh2の根底にある分子機構 乳癌細胞は、NK細胞の監視を逃れるためにERp5によって媒介されるタンパク質分解MICAを介してNKG2Dによる認識を低下させます。GRh2は、ERp5の発現を抑制してNK細胞からの殺傷メディエーターの含有量を増加させることにより、可溶性MICA(sMICA)の形成を妨害し、それによって乳がんとの闘いに顕著な効果を発揮します。 5. まとめ GRh2はNK細胞の細胞毒性作用を増強し、NK細胞の免疫監視機能を高めて乳がんと闘うため、乳がんの予防と治療のための強力な薬剤候補となる可能性があります。 参考 [1] Sung H、Ferlay J、Siegel RL、et al. Global Cancer Statistics 2020: GLOBOCAN による 185 か国の 36 のがんの世界の発生率と死亡率の推定値。CAがんJクリン。2021;71(3):209-249.土井:10.3322/caac.21660 [2] Yang C、Qian C、Zheng W、et al. ジンセノサイド Rh2 は、乳がんにおける ERp5 の阻害を介してナチュラル キラー (NK) 細胞の免疫監視を強化します。植物医学。2024;123:155180.土井:10.1016/j.phymed.2023.155180 BONTAC ジンセノサイド Rh2 の製品の利点 BONTACは、純粋な原料、より高い変換率、より高い含有量(最大99%)を備えた酵素合成によるジンセノサイド(Rh2)の全国的な大量生産を提供できる世界初の企業です。カスタマイズされた製品ソリューションのワンストップサービスは、BONTACで利用できます。独自のボンザイム酵素合成技術により、S型異性体とR型異性体の両方を正確に合成でき、より強力な活性と正確なターゲティング作用が得られます。当社の製品は、信頼できる価値のある厳格な第三者による自己検査を受けています。 免責事項 この記事は学術誌の参考文献に基づいています。関連情報は共有と学習のみを目的として提供されており、医学的アドバイスの目的を表すものではありません。侵害がある場合は、作成者に削除を依頼してください。この記事で表明された見解は、BONTACの立場を表すものではありません。

お問い合わせ

お気軽にお問い合わせください

メッセージを送信する。お待ちください。。。