NMNH: 1.「ボンザイム」全酵素法、環境にやさしく、有害な溶媒残留物が製造されていない粉末。 2. Bontacは、高純度、安定性のレベルでNMNH粉末を製造する世界初のメーカーです。 3.独自の「Bonpure」7段階精製技術、NMNH粉末の高純度(最大99%)と生産の安定性 4. 自社工場を擁し、NMNH粉末製品の高品質で安定した供給を保証するために、多くの国際認証を取得しています。 5. ワンストップの製品ソリューションカスタマイズサービスを提供する
ナド: 1.ボンザイム全酵素法、環境にやさしく、有害な溶剤残留物なし 2. 独自の Bonpure 7 段階精製技術、純度は 98% 以上 3.特別な特許取得済みのプロセス結晶形、より高い安定性 4. 高品質を確保するために多くの国際認証を取得しています 5. 業界をリードする国内外の NADH 特許 8 件 6. ワンストップの製品ソリューションカスタマイズサービスを提供します
ナッド: 1.「ボンザイム」全酵素法、環境にやさしく、有害な溶剤残留物なし 2. 世界中の 1000+ 企業の安定したサプライヤー 3. 独自の「Bonpure」7段階精製技術、より高い製品含有量とより高い変換率 4. 安定した製品品質を確保する凍結乾燥技術 5.独自の結晶技術、より高い製品溶解度 6.自社工場と多数の国際認証を取得し、高品質で製品の安定供給を確保しています
NMN: 1.「ボンザイム」全酵素法、環境にやさしく、有害な溶媒残留物なし 2.独自の「Bonpure」7段階精製技術、高純度(最大99.9%)と安定性 3. 業界をリードする技術: 15 件の国内外の NMN 特許 4.自社工場と多数の国際認証を取得し、高品質で安定した製品の供給を確保しています 5. 複数の in vivo 研究により、Bontac NMN は安全で効果的であることが示されています 6. ワンストップの製品ソリューションカスタマイズサービスを提供します 7. ハーバード大学の有名なデビッド・シンクレアチームのNMN原料サプライヤー
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (以下、BONTAC) は、2012 年 7 月に設立されたハイテク企業です。BONTACは、酵素触媒技術を中核とし、補酵素と天然物を主力製品として、研究開発、生産、販売を統合しています。BONTACには、補酵素、天然物、砂糖代替品、化粧品、栄養補助食品、医療中間体を含む6つの主要な製品シリーズがあります。
グローバルをリードするNMNの業界、BONTACは中国で最初の全酵素触媒技術を持っています。当社の補酵素製品は、健康産業、医療および美容、グリーン農業、生物医学、その他の分野で広く使用されています。BONTACは、独立したイノベーションを堅持し、170件の発明特許.従来の化学合成および発酵業界とは異なり、BONTACにはグリーン低炭素で高付加価値の生合成技術の利点があります。さらに、BONTACは中国で最初の省レベルでの補酵素工学技術研究センターを設立し、広東省でも唯一のものです。
今後、BONTACはグリーン、低炭素、高付加価値の生合成技術の利点に焦点を当て、学界や上流/下流のパートナーと生態学的関係を構築し、合成生物産業を継続的にリードし、人類のより良い生活を創造していきます。
NMNH 粉末調製の主な方法には、抽出、発酵、強化、生合成、有機物合成が含まれます。他の製剤と比較して、無公害、高純度、
NMNHを培養細胞に適用すると、「NMNに必要な濃度の10倍の濃度(5μM)でNAD+を大幅に増加させる」ことができ、NMNよりも効率的であることが示されています。さらに、NMNHはより効果的であることが示されており、500μMの濃度では、「NAD+濃度のほぼ10倍の増加を達成しましたが、NMNは1mMの濃度でも、これらの細胞のNAD+含有量を2倍にしかできませんでした」。
興味深いことに、NMNH は NMN に比べて作用が速く、効果が長持ちするようです。著者らによると、NMNHは「15分以内にNAD+レベルの大幅な増加」を誘発し、「NAD+は最大6時間着実に増加し、24時間安定したが、NMNはわずか1時間で頭打ちに達した。これはおそらく、NAD+へのNMNリサイクル経路がすでに飽和状態になっていたためである」とのことです。
1.「ボンザイム」全酵素法、環境にやさしく、有害な溶媒残留物が製造されていない粉末。
2. Bontacは、高純度、安定性のレベルでNMNH粉末を製造する世界初のメーカーです。
3. 独自の「Bonpure」7段階精製技術、高純度(最大99%)とNMNH粉末の生産安定性
4. 自社工場を擁し、NMNH粉末製品の高品質で安定した供給を保証するために、多くの国際認証を取得しています。
5. ワンストップの製品ソリューションカスタマイズサービスを提供する
NADHは体内で合成されるため、必須栄養素ではありません。合成には必須栄養素であるニコチンアミドが必要であり、エネルギー生産におけるニコチンアミドの役割は確かに不可欠です。ミトコンドリアの電子伝達系における役割に加えて、NADHはサイトゾルで生成されます。ミトコンドリア膜はNADHに対して不透過性であり、この透過性バリアは細胞質をミトコンドリアNADHプールから効果的に分離します。ただし、細胞質NADHは生物学的エネルギー生産に使用できます。これは、リンゴ酸-アスパラギン酸シャトルが細胞質ゾルのNADHからミトコンドリアの電子伝達系への還元当量を導入するときに発生します。このシャトルは主に肝臓と心臓で発生します。
ニコチンアミドアデニンジヌクレオチド(NAD+)恒常性は、NAD+依存性酵素による分解により常に損なわれています。NAD+ 前駆体であるニコチンアミド モノヌクレオチド (NMN) とニコチンアミド リボシド (NR) の補給による NAD+ の補充は、この不均衡を軽減できます。ただし、NMN と NR は、細胞の NAD+ プールに対する影響が軽度であり、高用量が必要であることによって制限されます。ここでは、還元型NMN(NMNH)の合成法を報告し、この分子を新しいNAD+前駆体として初めて同定しました。NMNHは、NMNやNRよりもはるかに高い程度で高速にNAD+レベルを増加させ、NRKおよびNAMPTに依存しない異なる経路を介して代謝されることを示しています。また、NMNH が低酸素症/再酸素化損傷時の腎尿細管上皮細胞の損傷を軽減し、修復を促進することも実証します。最後に、マウスへのNMNH投与は、全血中に急速かつ持続的なNAD+急増を引き起こし、肝臓、腎臓、筋肉、脳、褐色脂肪組織、および心臓のNAD +レベルの上昇を伴いますが、白色脂肪組織では増加しないことがわかりました。私たちのデータは、NMNHが急性腎障害の治療の可能性を秘めた新しいNAD+前駆体であることを強調し、還元されたNAD+前駆体のリサイクルのための新しい経路の存在を確認し、NMNHを還元されたNAD+前駆体の新しいファミリーのメンバーとして確立します。
まずは工場を視察します。いくつかの審査を経て、消費者と直接向き合うNMNH企業はブランド構築にもっと注意を払います。したがって、良いブランドにとっては品質が最も重要であり、原材料の品質を管理するために最初に行うことは工場を検査することです。Bontac社は、SGSのカテリアで高品質のNMNH粉末を実際に製造しています。第二に、純度がテストされます。純度はNMNパウダーの最も重要なパラメータの1つです。高純度のNMNHを保証できない場合、残りの物質は関連する基準を超える可能性があります。添付の証明書が示すように、ボンタックが製造するNMNH粉末は純度99%に達しています。最後に、それを証明するには専門的なテストスペクトルが必要です。有機化合物の構造を決定する一般的な方法には、核磁気共鳴分光法 (NMR) や高分解能質量分析法 (HRMS) などがあります。通常、これら2つのスペクトルの分析を通じて、化合物の構造を予備的に決定できます。
最近、日本特許庁(世界最大級の特許庁)から海を渡って深センに朗報が届きました。ボンタックが出願した「安定ニコチンアミドリボース組成物とその調製方法」の特許が承認され、証明書が発行されました。この発明特許は、ボンタック補酵素シリーズ製品の安定性にとって非常に重要です。これは、150件以上の特許出願を蓄積した後、Bontacが最近取得したもう一つの新しい特許です。科学研究におけるこのような目覚ましい成果は、間違いなくボンタックバイオテックの革新的な精神に対する最高の称賛です。 発明名:安定ニコチンアミドリボース組成物とその調製方法 技術的利点:ニコチンアミドリボースの工業的人工調製比較的純粋なニコチンアミドリボースを低コストで調製するためにかなりの進歩を遂げました。ただし、ニコチンアミドリボースは水分を非常に吸収しやすく、数時間以内に油に崩壊するため、モノマーは周囲温度と湿度の下で数秒または数分以内に粘性固体になります。ニコチンアミドリボースを乾燥固体として保つには、完全に乾燥した環境で保管するか、約-20°Cで冷凍保存する必要があり、ニコチンアミドリボースの商業的応用と促進が厳しく制限されます。したがって、安定したニコチンアミドリボース製品の開発は、早急に解決する必要がある大きな問題となっています。 本発明の目的は、上記の背景技術で言及されているニコチンアミドリボースモノマーは、水分を吸収して分解しやすいため、保存が困難であり、促進および適用できないという技術的課題を解決することである。本発明は、安定した特性、容易な保管、輸送、および使用を有するニコチンアミドリボース組成物を提供する。 テクノロジーを継続的に革新することによってのみ、新しい時代の新たな機会に適応し、新たな課題の前に「あらゆる変化に対応し」、量に基づいて質的な飛躍を生み出すことができます。 現在の有利な状況において、ボンタック・バイオテックのイノベーション計画は依然としてノンストップであり、市場全体の方向性に焦点を当て、あらゆるリンクに注意を払い、あらゆる微妙な問題を解決し、積極的なイノベーションでボンタックの伝説を書いています。現段階では、Bontac Bioは引き続きより良い研究開発チームを構築し、科学研究への投資を増やし、お客様により良い製品を作り、より大きな価値を提供していきます。
2021年8月10日、上海科学技術大学の研究者らは、腫瘍浸潤T細胞におけるTUBBYを介したNAMPT転写の欠陥を救うことにより、NAD+サプリメントが腫瘍殺傷機能を増強するというタイトルの論文をCell Reportsに発表し、CAR-T療法および免疫チェックポイント阻害剤療法中にNAD+を補給すると、Tの抗腫瘍活性を改善できることを明らかにしました。 現在、栄養製品としてのNAD+の補助前駆体は、人間の消費の安全性が検証されています。この成果は、T 細胞の抗腫瘍活性を改善するためのシンプルで実行可能な新しい方法を提供します。 自然に発生する腫瘍浸潤リンパ球 (TIL) や遺伝子組み換え T 細胞の養子移植、および T 細胞の機能を高めるための免疫チェックポイント遮断 (ICB) の使用を含むがん免疫療法は、治療抵抗性のがんの持続的な臨床反応を達成するための有望なアプローチとして浮上しています (Lee et al., 2015;Rosenberg and Restifo、2015;Sharma and Allison、2015)。免疫療法は臨床で成功裏に使用されていますが、免疫療法の恩恵を受ける患者の数はまだ限られています (Fradet et al., 2019;Newick et al., 2017)。腫瘍微小環境 (TME) 関連の免疫抑制は、両方の免疫療法に対する反応が低い、または反応がない主な理由として浮上しています (Ninomiya et al., 2015;Schoenfeld and Hellmann、2020)。したがって、免疫療法における TME 関連の限界を調査し、克服する取り組みが非常に緊急です。 免疫細胞とがん細胞が多くの基本的な代謝経路を共有しているという事実は、TME における栄養素をめぐる和解できない競争を意味します (Andrejeva and Rathmell, 2017;Chang et al., 2015)。制御されていない増殖中に、がん細胞はより迅速な代謝産物生成のために代替経路を乗っ取ります (Vander Heiden et al., 2009)。その結果、TME で有毒になる可能性のある栄養素の枯渇、低酸素症、酸性度、および代謝産物の生成が免疫療法の成功を妨げる可能性があります (Weinberg et al., 2010)。実際、TILは成長する腫瘍内でミトコンドリアストレスを経験し、疲労状態になることがよくあります(Scharping et al.、2016)。興味深いことに、複数の研究は、TME の代謝変化が T 細胞の分化と機能活性を再形成する可能性があることも示しています (Bailis et al., 2019;Chang et al., 2013;Peng et al., 2016)。これらすべての証拠は、T 細胞の代謝再プログラミングがストレスを受けた代謝環境から T 細胞を救い、それによって抗腫瘍活性を再活性化する可能性があるという仮説を立てるようになりました (Buck et al., 2016;Zhang et al., 2017)。 今回の研究では、遺伝子スクリーニングと化学スクリーニングの両方を統合することで、NAD+生合成に関与する重要な遺伝子であるNAMPTがT細胞の活性化に不可欠であることを特定しました。NAMPT阻害は、T細胞のNAD+の強力な減少をもたらし、それによって解糖調節とミトコンドリア機能を破壊し、ATP合成を遮断し、T細胞受容体(TCR)の下流シグナル伝達カスケードを弱めました。卵巣がん患者において、TILは末梢血単核球(PBMC)のT細胞よりもNAD+およびNAMPTの発現レベルが比較的低いという観察に基づいて、T細胞の遺伝子スクリーニングを実施し、タビー(TUB)がNAMPTの転写因子であることを同定しました。最後に、この基本的な知識を(プレ)クリニックに適用し、NAD+の補給が養子移植CAR-T細胞療法と免疫チェックポイント遮断療法の両方で抗腫瘍殺傷活性を劇的に改善するという非常に強力な証拠を示し、NAD+代謝を標的としてがんをより良く治療する有望な可能性を示しています。 1.NAD+はエネルギー代謝に影響を与えることでT細胞の活性化を調節します 抗原刺激後、T 細胞はミトコンドリア酸化から ATP の主な供給源としての解糖まで、代謝の再プログラミングを受けます。細胞増殖とエフェクター機能をサポートするのに十分なミトコンドリア機能を維持しながら。NAD+ が酸化還元の主な補酵素であることを考慮して、研究者らは代謝質量分析や同位体標識などの実験を通じて、T 細胞の代謝レベルに対する NAD+ の効果を検証しました。in vitro 実験の結果は、NAD+ 欠乏症が T 細胞の解糖、TCA サイクル、および電子伝達系代謝のレベルを大幅に低下させることを示しています。研究者らは、ATPを補充する実験を通じて、NAD+の欠乏が主にT細胞におけるATPの産生を阻害し、それによってT細胞の活性化レベルを低下させることを発見しました。 2.NAMPTによって制御されるNAD+サルベージ合成経路は、T細胞の活性化に不可欠です 代謝リプログラミングプロセスは、免疫細胞の活性化と分化を調節します。T細胞代謝を標的とすることは、細胞的に免疫応答を調節する機会を提供します。腫瘍微小環境内の免疫細胞、それ自体の代謝レベルもそれに応じて影響を受けます。この記事の研究者らは、ゲノムワイドなsgRNAスクリーニングと代謝関連の低分子阻害剤スクリーニング実験を通じて、T細胞の活性化におけるNAMPTの重要な役割を発見しました。ニコチンアミドアデニンジヌクレオチド(NAD+)は酸化還元反応の補酵素であり、サルベージ経路、de novo合成経路、およびPreiss-Handler経路を介して合成できます。NAMPT 代謝酵素は、主に NAD+ サルベージ合成経路に関与しています。臨床腫瘍サンプルの分析により、腫瘍浸潤性T細胞では、NAD+レベルとNAMPTレベルが他のT細胞よりも低いことがわかりました。研究者らは、NAD+ レベルが腫瘍浸潤性 T 細胞の抗腫瘍活性に影響を与える要因の 1 つである可能性があると推測しています。 3.NAD+を補給してT細胞の抗腫瘍活性を高める 免疫療法はがん治療における探索的研究ですが、主な問題は、最良の治療戦略と、全集団における免疫療法の有効性です。研究者らは、NAD+ レベルを補給することで T 細胞の活性化能力を高めることで、T 細胞ベースの免疫療法の効果を高めることができるかどうかを研究したいと考えています。同時に、抗CD19 CAR-T療法モデルと抗PD-1免疫チェックポイント阻害剤療法モデルでは、NAD+の補給がT細胞の腫瘍殺傷効果を有意に高めることが確認されました。研究者らは、抗CD19 CAR-T治療モデルにおいて、NAD+を補給したCAR-T治療群のほぼすべてのマウスが腫瘍クリアランスを達成したのに対し、NAD+を補給していないCAR-T治療群は約20%しかマウスの腫瘍クリアランスを達成しなかったことを発見しました。これと一致して、抗PD-1免疫チェックポイント阻害剤治療モデルでは、B16F10腫瘍は抗PD-1治療に対して比較的耐性があり、阻害効果は有意ではありません。ただし、抗 PD-1 および NAD+ 治療群における B16F10 腫瘍の増殖は有意に阻害される可能性があります。これに基づいて、NAD+ の補給は、T 細胞ベースの免疫療法の抗腫瘍効果を高めることができます。 4.NAD+の補給方法 NAD+分子は大きく、人体に直接吸収して利用することはできません。経口で直接摂取されたNAD+は、主に小腸のブラシ境界細胞によって加水分解されます。考え方の観点から見ると、NAD+を補う別の方法があり、それは特定の物質を補給して人体内で自律的にNAD+を合成できるようにする方法を見つけることです。人体でNAD+を合成する方法は、Preiss-Handler経路、de novo合成経路、サルベージ合成経路の3つです。3つの方法でNAD+を合成できますが、一次と二次の違いもあります。その中で、最初の 2 つの合成経路によって生成される NAD+ は、ヒト NAD+ 全体の約 15% しか占めず、残りの 85% は修復合成の方法によって達成されます。言い換えれば、サルベージ合成経路は、人体がNAD+を補うための鍵です。 NAD+ の前駆体の中で、ニコチンアミド (NAM)、NMN、ニコチンアミド リボース (NR) はすべてサルベージ合成経路を通じて NAD+ を合成するため、これら 3 つの物質は NAD+ を補給するための体の選択となっています。 NR自体には副作用はありませんが、NAD+合成の過程で、そのほとんどはNMNに直接変換されるのではなく、最初にNAMに消化されてからNMNの合成に参加する必要がありますが、それでも律速酵素の制限から逃れることはできません。したがって、NRの経口投与によるNAD+の補給能力も制限的である。 NMNはNAD+を補給する前駆体として、律速酵素の制限を回避するだけでなく、体内で非常に迅速に吸収され、NAD+に直接変換できます。したがって、NAD+を補うための直接的、迅速、効果的な方法として使用できます。 専門家のレビュー: Xu Chenqi(中国科学院分子細胞科学優秀イノベーションセンター、免疫学研究専門家) がん治療は世界でも問題です。免疫療法の発展により、従来のがん治療の限界が補われ、医師の治療法が拡大しました。がん免疫療法は、免疫チェックポイント遮断療法、操作T細胞療法、腫瘍ワクチンなどに分けることができます。これらの治療法は、がんの臨床治療において一定の役割を果たしてきました。同時に、これにより、免疫療法の効果をさらに高め、免疫療法の受益者を拡大する方法に現在の免疫療法研究の焦点が当てられています。
紹介 糖尿病は世界中で死亡と障害の主な原因の 1 つであり、患者の生活の質に大きな影響を与えています。Lancetが発表した糖尿病に関する最新データ(GBD研究2021)によると、2型糖尿病(T2DM)の症例は全糖尿病症例のほぼ96.0%を占めており、グルコース取り込み障害が特徴である。2021 年の糖尿病患者数は約 5 億 2,900 万人で、年齢標準化有病率は 6.1% です。驚くべきことに、β-ニコチンアミド モノヌクレオチド (NMN) は、ミトコンドリアの生合成ではなく、脂肪組織への予期せぬ影響を介して T2DM を改善することができます。 1990 年から 2050 年までの 1 型および 2 型糖尿病の世界的な年齢標準有病率の予測 T2DMの危険因子 高体格指数 (BMI) が T2DM の主な危険因子であり、食事の危険因子、環境的または職業的要因、喫煙、不十分な身体活動、アルコール摂取などがそれに続きます。 T2DMにおけるNMN治療の臓器特異的効果 NMN は、高脂肪食品によって誘発された T2DM のマウスにおける軽度の障害とエネルギー効率の低いタンパク質合成を軽減します。具体的には、NMNはスプライセオソームタンパク質をダウンレギュレートし、肝細胞のリボソームタンパク質をアップレギュレートします。さらに、NMN はプロテアソームをダウンレギュレートし、筋細胞の DNA 複製と細胞周期経路をアップレギュレートします。 NMN処理HFDマウス肝臓の統合プロテオミクスデータ解析 マウス筋組織の統合プロテオミクスデータ解析 エネルギー貯蔵庫である脂肪組織は、グルコース代謝に関与していることが証明されています。NMNは、レジスチンのダウンレギュレーション、タンパク質合成/分解の増加、脂肪酸分解、リソソームタンパク質のアップレギュレーション(特にATP6V1プロトンポンプのアップレギュレーション)、白色脂肪組織におけるmTOR細胞増殖シグナル伝達、前脂肪細胞から褐色脂肪細胞への分化、および/または褐色脂肪組織のミトコンドリア内膜のタンパク質である熱発生性UCP1の過剰発現。 NMN処理HFDマウス脂肪組織の統合プロテオミクスデータ解析 結論 NMN は臓器特異的な効果を発揮し、グルコース取り込みの改善に重要な役割を果たし、T2DM を含む代謝障害の管理において強力な可能性を示しています。 参考 [1] GBD 2021 糖尿病協力者。1990 年から 2021 年までの世界、地域、および国の糖尿病負担と 2050 年までの有病率の予測: 2021 年の世界疾病負担研究の体系的な分析。刃針。2023;402(10397):203-234.土井:10.1016/S0140-6736(23)01301-6 [2] ポペスク RG、ディニスキオトゥ A、ソアレ T、ヴラセ E、マリネスク GC。ニコチンアミドモノヌクレオチド (NMN) は、ミトコンドリアの生合成ではなく、脂肪組織への予期しない影響を通じて 2 型糖尿病に作用します。国際分子科学 J. 2024;25(5):2594.2024 年 2 月 23 日公開。土井:10.3390/ijms25052594 ボンタックNMN BONTACは、NMN業界のパイオニアであり、世界初の全酵素触媒技術を備えたNMNの大量生産を開始した最初のメーカーです。現在、BONTACはコエンザイム製品のニッチ分野のリーディングカンパニーとなっています。特に、BONTACはハーバード大学の有名なデビッド・シンクレア・チームのNMN原料サプライヤーであり、「内皮NAD+-H2Sシグナル伝達ネットワークの損傷は血管老化の可逆的な原因である」というタイトルの論文でBONTACの原料を使用しています。当社のサービスと製品は、グローバルパートナーから高い評価を得ています。さらに、BONTACは中国広東省に初の国立および唯一の省の独立した補酵素工学技術研究センターを持っています。BOMNTACの補酵素製品は、栄養健康、生物医学、医療美容、日用化学品、グリーン農業などの分野で広く使用されています。 免責事項 この記事は学術誌の参考文献に基づいています。関連情報は共有と学習のみを目的として提供されており、医学的アドバイスの目的を表すものではありません。侵害がある場合は、作成者に削除を依頼してください。この記事で表明された見解は、BONTACの立場を表すものではありません。 いかなる状況においても、BONTACは、お客様が本ウェブサイト上の情報および資料に依存したことに起因または間接的に生じるいかなる請求、損害、損失、経費、費用または責任(利益の損失、事業の中断、または情報の損失に対する直接的または間接的な損害を含むがこれらに限定されない)について、いかなる方法でも責任を負わないものとします。